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ABSTRACT: It is evident that complex optimization problems are becoming increasingly prominent, metaheuristic
algorithms have demonstrated unique advantages in solving high-dimensional, nonlinear problems. However, the
traditional Sparrow Search Algorithm (SSA) suffers from limited global search capability, insufficient population
diversity, and slow convergence, which often leads to premature stagnation in local optima. Despite the proposal of
various enhanced versions, the effective balancing of exploration and exploitation remains an unsolved challenge. To
address the previously mentioned problems, this study proposes a multi-strategy collaborative improved SSA, which
systematically integrates four complementary strategies: (1) the Northern Goshawk Optimization (NGO) mechanism
enhances global exploration through guided prey-attacking dynamics; (2) an adaptive t-distribution mutation strategy
balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom; (3)
a dual chaotic initialization method (Bernoulli and Sinusoidal maps) increases population diversity and distribution
uniformity; and (4) an elite retention strategy maintains solution quality and prevents degradation during iterations.
These strategies cooperate synergistically, forming a tightly coupled optimization framework that significantly improves
search efficiency and robustness. Therefore, this paper names it NTSSA: A Novel Multi-Strategy Enhanced Sparrow
Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.
Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy
on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of
magnitude. Compared with SSA, GWO, ISSA, and CSSOA, NTSSA improves solution accuracy by up to 14.3% (F8) and
99.8% (F12), while accelerating convergence by approximately 1.5–2×. The Wilcoxon rank-sum test (p < 0.05) indicates
that NTSSA demonstrates a statistically substantial performance advantage. Theoretical analysis demonstrates that the
collaborative synergy among adaptive mutation, chaos-based diversification, and elite preservation ensures both high
convergence accuracy and global stability. This work bridges a key research gap in SSA by realizing a coordinated
optimization mechanism between exploration and exploitation, offering a robust and efficient solution framework for
complex high-dimensional problems in intelligent computation and engineering design.
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1 Introduction
As optimization problems become increasingly complex, many of them no longer have known

polynomial-time algorithms to solve them. Therefore, metaheuristic algorithms are often employed to
approximate solutions. Metaheuristic algorithms are optimization methods that perform global search by
simulating natural phenomena or biological processes. Metaheuristics often find near-optimal solutions
more quickly than exact algorithms. The efficacy of these methodologies has been demonstrated through
their successful application in the resolution of complex optimization problems, which are typically chal-
lenging to address with precision using conventional methods. These algorithms are not contingent upon
particulars of the problem, thereby ensuring their broad applicability. They are capable of adapting to a range
of optimization problems. Metaheuristics typically provide approximate solutions, particularly for large-scale
and complex solution spaces, and feature adjustable search mechanisms that can be optimized according to
the characteristics of the problem.

Metaheuristic algorithms are typically categorized into four major types: those based on evolutionary
principles, swarm intelligence, human behavior, and phenomena from physics, chemistry, or biology. Among
them, evolution-based algorithms are inspired by natural evolutionary processes, particularly the concept of
“survival of the fittest” derived from Darwinian theory. These algorithms aim to optimize solutions through
iterative procedures that mimic natural selection, reproduction, and mutation. The primary objective of this
study is the identification of a global optimum within the solution space. Due to their robustness in handling
complex, nonlinear, and non-differentiable high-dimensional problems, evolution-based methods are highly
effective at escaping local optima. Notable representatives of this class include Genetic Algorithms (GA) [1]
and Differential Evolution (DE) [2]. Nevertheless, a common drawback of these techniques is their relatively
slow convergence, largely because they do not utilize gradient information.

However, despite the commendable performance of these algorithms in their respective fields, they still
have their limitations, as per the “No Free Lunch” (NFL) theorem [3]. These limitations encompass challenges
such as suboptimal convergence accuracy, inadequate global search capability, and the pervasive issue of
encountering local optima. In accordance with the NFL theorem, the expected performance of any opti-
mization algorithm is equivalent for all possible problems, signifying that no single algorithm can perfectly
solve all problems. Based on this principle, researchers are continually improving existing algorithms and
introducing new and enhanced versions to address both current and future optimization challenges.

This paper presents an improved version of the SSA algorithm, NTSSA: A Novel Multi-Strategy
Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for
Global Optimization, to enhance local exploitation ability and randomness. The performance of the proposed
algorithm is evaluated on the CEC2005 benchmark function set. The contributions of this study are a new,
superior-performing algorithm and new insights and approaches for future research. The following is a brief
overview of the main contributions of this paper:

(1) The Northern Goshawk Optimization (NGO) algorithm has been integrated. In the Sparrow Search
Algorithm (SSA), the initial phase of each iteration often sees a single scout rapidly converging on the
global optimum, exhibiting strong exploitation ability. However, this approach neglects exploration of
nearby search space, leading to a lack of global exploration and a tendency to become trapped in local
optima. The update strategy of the Northern Goshawk, in which prey selection is random in the search
space, is incorporated to enhance the SSA algorithm’s exploration capability.

(2) The objective is to enhance the convergence speed of the algorithm. An adaptive t-distribution
mutation strategy is introduced during the follower phase of the Sparrow Search Algorithm. This does
not alter the original update mechanism of the SSA, ensuring that the algorithm maintains good global
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exploration ability in the early iterations and effective local exploitation ability in the later iterations,
thereby accelerating convergence.

(3) In order to enrich the initial population with a greater variety of characteristics, Bernoulli chaotic
mapping and sinusoidal chaotic mapping are integrated into the initialization process. The goal is to
improve the algorithm’s ability to find the best solution for different functions.

(4) An innovative elitism strategy is introduced in the population update mechanism. By selectively
retaining the best individuals in each generation based on fitness, this strategy effectively solves
the problem of losing high-quality solutions during the iteration process, which is common in
traditional SSA.

The structure of this paper is as follows. Sections 2 and 3 offer concise overviews of the SSA
and NGO algorithms, along with an analysis of their respective strengths and weaknesses. Section 4
explores the concepts of adaptive t-distribution and chaotic mapping. In Section 5, the elitism strategy is
introduced. Section 6 elaborates on the core principles and implementation details of the NTSSA algo-
rithm. Section 7 thoroughly examines the experimental results. Lastly, Section 9 summarizes the study and
outlines possible directions for future research.

2 Related Work
Swarm intelligence algorithms optimize by simulating group intelligence to find global solutions. These

algorithms model groups as biological populations, where individuals collaborate to achieve tasks impossible
for any one individual. The Grey Wolf Optimizer (GWO) [4] is a swarm intelligence-based algorithm that
mimics grey wolf packs’ hunting behavior. GWO updates positions to approach the target, achieving global
optimization. However, these algorithms face challenges, such as local optima, slow convergence, high
sensitivity to initial solutions, and premature convergence. These limitations affect their performance in
complex optimization problems.

The development of human behavior-based algorithms is predominantly driven by various human
behaviors, including teaching, social interaction, learning, emotional responses, and management. Common
algorithms in this category include Internal Search Algorithm (ISA) [5] and Social Group Optimization
(SGO) [6], among others. While these algorithms can offer strong global search capabilities, they may be
limited in terms of how quickly they can converge and how accurately they can find the solution. This is
particularly true when dealing with large-scale complex problems, where issues such as local optima and
slow convergence rates can arise.

Physics and chemistry-based algorithms optimize solutions by simulating fundamental principles
of physical and chemical processes, such as thermodynamic processes, molecular motion, and chemical
reactions. These algorithms are inspired by phenomena in physics and chemistry. For example, the Simulated
Annealing (SA) algorithm mimics the changes in molecular states during physical annealing, optimizing
the search process by gradually lowering the temperature to avoid local optima [7]. Such algorithms are
characterized by their ability to perform extensive global searches, rendering them well-suited for addressing
large-scale, complex optimization problems. However, in high-dimensional and multimodal optimization
tasks, they may suffer from premature convergence, which can impact their performance. As a result, in
practical applications, these algorithms are often combined with other methods or modified to improve their
efficiency and accuracy.

Swarm intelligence-based algorithms, due to their global search capabilities, exhibit strong adaptability,
parallelism, and flexibility, making them highly effective at addressing complex, non-linear optimization
problems while providing efficient and stable solutions. These features offer significant advantages and
considerable development potential. Machine learning (ML) has achieved a wide range of applications in
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image recognition, natural language processing, and predictive modeling, and has demonstrated excellent
performance relying on powerful data-driven modeling capabilities. However, ML methods often rely on
large-scale, high-quality training data and assume that the problems have learnable mapping relationships,
and are suitable for problems with clear structure, microscopic objective functions, and sufficient samples.
When dealing with NP-hard problems such as combinatorial optimization and path planning, traditional
ML methods may face modeling difficulties, weak generalization ability, and the risk of falling into local
optimal solutions. Compared to machine learning algorithms, including traditional machine learning and
deep learning algorithms, evolutionary algorithms (EAs) are more applicable to nonlinear, nonconvex, and
high-dimensional optimization problems and have better robustness. They can help solve noise [8] and
local optimal solution [9] issues. EAs usually do not need gradient information, can perform efficient global
search in highly complex or unstructured search spaces [10–12]. In some application scenes, researchers
would like to use EAs rather than machine learning algorithms to avoid unknown black-box procedures [13].
Therefore, this paper adopts EAs as the main solution method, aiming to make full use of their advantages
in terms of search capability and flexibility to overcome the limitations faced by traditional MLs in such
tasks, so as to solve the optimization objectives and constraints proposed in the study more effectively. In
1995, Kennedy and colleagues introduced the Particle Swarm Optimization (PSO) algorithm [14]. Around
the same period, Dorigo et al. developed the Ant Colony Optimization (ACO) algorithm [15], which
emulates the foraging patterns of ants to determine the shortest path. ACO proved effective in solving
the traveling salesman problem and attracted significant academic interest. Building upon this foundation,
Passino proposed the Bacterial Foraging Algorithm (BF) in 2002 [16], followed by Karaboga’s introduction
of the Artificial Bee Colony (ABC) algorithm in 2005 [17]. In 2006, Basturk et al. presented the Monkey
Search (MS) algorithm [18], and in 2008, Yang developed the Firefly Algorithm (FFA) [19]. A year later, Yang
and colleagues introduced the Cuckoo Search (CS) algorithm [20], and in 2010, Yang also proposed the Bat
Algorithm (BA) [21], which leverages echolocation behavior to perform global optimization. This sparked a
surge of interest in enhancing swarm intelligence-based techniques. Subsequently, in 2011, Teodorovic et al.
proposed the Bee Colony Optimization (BCO) algorithm [22], and Yang et al. introduced the Wolf Search
(WS) algorithm [23]. In 2012, Gandomi and collaborators developed the Sea Urchin Algorithm (KH) [24].
The year 2014 saw the release of two notable algorithms by Mirjalili: the Ant Lion Optimizer (ALO) [25]
and the Grey Wolf Optimizer (GWO). In 2015, Mirjalili also proposed the Whale Optimization Algorithm
(WOA) [26]. The following year, Askarzadeh introduced the Crow Search Algorithm (CSA) [27], while
Saremi et al. presented the Grasshopper Optimization Algorithm (GOA) [28]. In 2017, Singh and coauthors
proposed the Squirrel Search Algorithm (SSA) [29]. Arora et al. introduced the Butterfly Optimization
Algorithm (BOA) in 2018 [30], and Mirjalili followed in 2019 with the Harris Hawk Optimization (HHO)
algorithm [31]. More recently, in 2022, Kuyu et al. proposed the GOZDE algorithm [32], and in 2024, Zhong
et al. proposed the Starfish Optimization Algorithm (SFOA) [33].

Xue et al.’s Sparrow Search Algorithm (SSA) is a metaheuristic algorithm inspired by the foraging
behavior of sparrows. Sparrows are divided into two types: discoverers and joiners. Discoverers search for
food and provide foraging area information, while joiners use this information to locate food. In the natural
environment, sparrows engage in mutual monitoring, and joiners, to increase their predation rates, often
compete for food resources with higher foraging peers. All individuals remain alert to their surroundings
while foraging to guard against potential predators. Compared to other algorithms, SSA has the advantages of
fast convergence and high precision in solving many optimization problems. However, it also has drawbacks,
such as low population diversity, poor global search capability, and premature convergence into local optima.
The main reasons for these issues are: the sparrow population initialization process is simply a random
placement of initial positions, and as iterations progress, population diversity rapidly decreases; the sparrow
position update mechanism does not effectively balance global search and local exploitation, leading to
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premature convergence; and there is insufficient exploration of the optimal sparrow position, which results
in the algorithm becoming trapped in local optima.

To address the aforementioned issues, there are currently two main approaches: directly improving the
SSA itself and integrating other intelligent optimization algorithms to enhance the SSA.

There are many methods for directly improving the SSA, with some representative ones being the
Adaptive Mutation Sparrow Search Optimization Algorithm (AMSSA) proposed by Tang et al. (2021) [34],
which aims to enhance the balance between the global and local search capabilities of SSA. This algorithm
initializes the population using a chaotic mapping sequence, which increases the randomness of the initial
population, thereby enhancing the global search ability. The introduction of the Cauchy mutation and
Tent chaotic disturbance further improves the local search capability, helping the algorithm escape from
local extrema. Additionally, AMSSA optimizes the collaborative work between global and local searches by
adaptively adjusting the number of explorers and followers, effectively improving the optimization accuracy
and convergence speed. Another approach is the Improved Sparrow Search Algorithm (ISSA) proposed by
Mao et al. (2022), which integrates Cauchy mutation and reverse learning [35]. This algorithm addresses
the issue of population diversity reduction and premature convergence to local optima in the later stages
of SSA iterations. It combines chaotic initialization with optimization of individual positions based on
the previous generation’s global best solution, improving global search ability. The introduction of Cauchy
mutation and reverse learning strategies enhances the algorithm’s ability to escape from local extrema and
achieves a better balance between global and local search. Compared to AMSSA, ISSA further optimizes
search efficiency and accuracy by adaptively adjusting weight strategies. Finally, Huang (2022) proposed
a Sparrow Search Algorithm that integrates the t-distribution and Tent chaotic mapping [36]. Unlike the
previous two studies, this research focuses on using the t-distribution to mutate individual positions to
enhance the algorithm’s ability to escape local optima, while using Tent chaotic mapping to generate the
initial population, thus improving global search diversity and accelerating convergence speed. Huang also
applied the improved algorithm to optimize SVM classifiers and BP neural networks to solve malware and
malicious domain name classification problems, demonstrating the algorithm’s effectiveness and practicality
in real-world applications.

The integration of other optimization algorithms compensates for the deficiencies of SSA by combining
the strengths of different methods. For instance, Tang et al. integrated the Sine Cosine Algorithm (SCA) [37];
Gao et al. incorporated the Golden Sine Algorithm [38]; Xu and Jiang separately combined SSA with the Bird
Swarm Algorithm (BSA) [39,40]; Zhang et al. integrated the Butterfly Optimization Algorithm (BOA) [41];
Gao et al. applied the Particle Swarm Optimization (PSO) algorithm [42]; Liu and Mo combined SSA with
the Firefly Algorithm (FA) [43]; and Yang et al. incorporated the Slime Mold Algorithm (SMA) [44]. Notably,
due to its strong performance, this hybrid approach exhibits promising prospects for further development.
Finally, Kathiroli integrated SSA with the Differential Evolution Algorithm (DEA) [45].

3 The Sparrow Search Algorithm (SSA)

The Sparrow Search Algorithm (SSA) is a recently developed swarm intelligence optimization method
that draws inspiration from avian foraging strategies and behaviors, particularly the evasive maneuvers
exhibited by sparrows when confronted with predators [46]. The model simulates the biological charac-
teristics of sparrow populations in their foraging and anti-predation activities. This algorithm was first
proposed by Xue in 2020 and is designed to solve global optimization problems, characterized by high
solution accuracy and efficiency.
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3.1 Algorithm Principle
In the Sparrow Search Algorithm (SSA), the sparrow population is divided into two categories: explorers

and joiners. Explorers are responsible for locating new food sources (i.e., discovering new solutions in the
search space) and are typically the fittest individuals in the population. They guide the entire population
toward potential high-quality solutions. Joiners, on the other hand, follow the explorers and search for food
by imitating their behavior.

(1) Explorers: Representing 10%–20% of the total population, explorers actively search new regions of the
solution space. They possess higher exploration capabilities and a broader search range.

(2) Joiners: Comprising 80%–90% of the total population, joiners locate food sources by mimicking
the behavior of explorers. Their exploration ability is relatively lower, and their search range is
more limited.

In a natural setting, individuals within a population monitor each other. To increase their foraging
success, joiners in a sparrow population often compete for food resources with companions with higher
intake rates. While foraging, all individuals remain vigilant to their surroundings to guard against potential
predators. Based on these observations, the following rules can be established:

(1) Within the entire population, discoverers have higher energy reserves and are responsible for searching
food-rich areas, providing foraging regions, and directions for all joiners. In the algorithm, sparrows
with higher fitness values possess greater energy reserves.

(2) In the event of predator detection by a sparrow, the sparrow will immediately signal an alarm. In the
event that the alarm value exceeds a predetermined safety threshold, the discoverers will guide the
joiners to an alternate safe area for foraging.

(3) the identity of a sparrow in the algorithm is determined based on its ability to identify superior food
sources. Despite the potential for fluctuations in the composition of individual roles, the ratio of
discoverers and joiners within the population remains constant.

(4) Sparrows with higher energy reserves act as discoverers. To acquire more energy, joiners with lower
reserves may relocate to other areas for foraging.

(5) During foraging, joiners always follow discoverers with higher energy reserves. To improve their
foraging success, individuals monitor the discoverers and compete for food resources.

(6) When predators pose a significant threat, sparrows at the periphery of the group quickly move to safer
regions to secure a better position, whereas those in the center move randomly.

3.2 Algorithm Steps
In this subsection, we will introduce the procedures of the algorithm. Details are presented in

each subsection.

3.2.1 Initialization
The first step is to establish the parameters: the size of the sparrow population, the range of the search

space, and the maximum number of iterations. The initial sparrow population is randomly generated, and the
fitness of each individual is computed. There are N sparrows in the population, with each sparrow’s position
in the solution space represented as xi = (xi1, xi2,. . ., xid), where d is the problem’s dimension, and ub and lb
represent the upper and lower bounds of the search space, respectively.

X = lb + rand × (ub − lb) (1)
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3.2.2 Population Division
The avian population is divided into two distinct categories: discoverers and followers. This classification

is predicated on the birds’ relative fitness values. The discoverers constitute a segment of the populace, while
the remaining individuals are adherents.

3.2.3 Updating the Discoverers
Discoverers update their positions by referencing their current location, the number of iterations, and

random factors. The update formula takes into account the sparrow’s foraging behavior and exploration
capability. Assuming that discoverers make up 20% of the population, after ranking the population based on
fitness values, the top 20% of individuals are designated as discoverers. In other words, in the implementation,
updating the positions of the top 20% of individuals corresponds to updating the discoverers’ positions. Based
on Rules (1) and (2), the position update of the discoverers during each iteration is described as follows:

Xt+1
i , j =

⎧⎪⎪⎨⎪⎪⎩
Xt

i , j ⋅ e(−
i

α⋅i termax
) , i f R2 < ST

Xt
i , j + Q ⋅ L , i f R2 ≥ ST

(2)

In this equation, Xt
i , j represents the standpoint of the i-th sparrow in the j-th dimension at the t-th

iteration. α ∈ (0, 1] is a random number, and itermax denotes the maximum number of iterations. Q is a
random number following a normal distribution, and L is a 1 × d matrix of ones. R2 (∈ [0, 1]) and ST(∈
[0.5, 1]) represent the warning value and the safety threshold, respectively.

When the warning value R2 is less than the safety threshold ST, it indicates that the environment is safe,
and thus the discoverer’s search range is large. When the warning value R2 is greater than (or equal to) the
safety threshold ST, it indicates the presence of a certain number of predators, and the sparrows need to move
to a safer area, performing a random walk based on a normal distribution.

3.2.4 Updating the Followers
For the followers, they need to execute rules (4) and (5). The followers update their positions based

on the discoverer’s location and their state. Some followers may fly to other areas to search for food due
to hunger, thereby increasing the diversity of the population. The follower’s position update considers both
the distance to the global best position Xbest and random factors. Assuming that the followers constitute
80% of the population, the bottom 80% of individuals, after sorting the population according to their fitness
values, are considered followers. That is, in the code implementation, only the positions of the bottom 80%
of individuals need to be updated, which corresponds to updating the positions of the followers. When the
follower belongs to the better half of the population, the first subformula is used to update its position. If the
follower belongs to the poorer half, it is as if the sparrow is very hungry and needs to randomly fly to another
location. The position update of the followers is described as follows:

Xt+1
i , j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q ⋅ e
(

Xworst−Xt
i , j

i2 )
, i f i > n

2
Xt+1

P + ∣Xt
i , j − Xt+1

P ∣ ⋅ A+ ⋅ L , otherwise
(3)

where XP is the position of the current best solution occupied by the discoverer, and Xworst represents the
current worst global position. A is a 1 × d matrix, where all elements are randomly assigned values of 1 or −1,
and A+ = AT(A⋅AT)−1.
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3.2.5 Updating the Position of Sparrows Aware of Danger
The simulation experiment assumes 10% to 20% of sparrows are aware of danger. Their positions are

randomly generated. The expression is represented as follows:

Xt+1
i . j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xt
best + β ⋅ ∣Xt

i , j − Xt
best ∣ , i f fi > fg

Xt
i , j + K ⋅ (

∣Xt
i , j−Xt

worst ∣
( f i− f g)+ε ) , i f fi = fg

(4)

where Xbest is the current global best position. β, as the step size control parameter, is a random number that
follows a normal distribution with a mean of 0 and a variance of 1. K ∈ [−1, 1] is a random number, and f i
is the fitness value of the current sparrow individual. f g and f w represent the current global best and worst
fitness values, respectively. ε is a very small constant to avoid division by zero.

For simplicity, when f i > f g , it indicates that the sparrow is located in the periphery of the population and
is highly vulnerable to predator attacks. Xbest , representing the position of the sparrow, is the best and safest
position in the population. If f i = f g , the sparrow in the middle of the population has realized the danger and
needs to move closer to others to minimize risk. K represents direction and step size.

3.2.6 Fitness Evaluation and Identity Conversion
Subsequently, the intrinsic value of each individual is recalculated. Conversely, the alterations in fitness

values permit the conversion of identities between discoverers and followers.

3.2.7 Iteration and Termination
It is imperative to reiterate the aforementioned steps until the desired number of iterations is attained or

alternative stopping rules are fulfilled. The objective of this study is to determine the global optimal solution
or the position of the optimal individual.

4 Northern Goshawk Optimization (NGO)
In this section, the objective of the paper is to present the methodology proposed by the researchers.

The paper first talk about the origin of the algorithm, presenting an overview. Subsequently, mathematical
reasoning is provided to support the methodology. Meanwhile, the procedures are presented.

4.1 Origin of the Algorithm
The Northern Goshawk Optimization (NGO) algorithm, proposed in 2022 by Mohammad Dehghani

and colleagues, simulates the hunting behavior of the Northern Goshawk [47]. The Northern Goshawk is a
medium-to-large raptor species in the Accipitridae family. Its scientific name was first described by Linnaeus
in 1758 in his work Systema Naturae. The Northern Goshawk preys on a variety of animals, including
both small and large birds, as well as small mammals such as mice, rabbits, and squirrels, and even larger
animals like foxes and raccoons. It is the only member of the genus Accipiter that is distributed across both
the Eurasian continent and North America. Males are slightly smaller than females, with males measuring
46–61 cm in length, having a wingspan of 89–105 cm, and weighing approximately 780 g. In contrast, females
are 58–69 cm long, weigh 1220 g, and have an estimated wingspan of 108–127 cm. The hunting strategy of
the Northern Goshawk involves two stages: the first stage consists of moving at high speed toward the prey
after recognizing it; the second stage involves chasing and capturing the prey.
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4.2 Mathematical Model of the Algorithm
The Northern Goshawk Optimization (NGO) algorithm has two stages: prey recognition and attack

(exploration phase), and pursuit and escape (exploitation phase).

4.2.1 Initialization
In the Northern Goshawk Optimization algorithm, the population of Northern Goshawks can be

represented by the following population matrix:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
⋮

Xi
⋮

XN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×m

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 . . . x1, j . . . x1,m
⋮ ⋱ ⋮ ⋮

xi ,1 . . . xi , j . . . xi ,m
⋮ . . . ⋱ ⋮

xN ,1 . . . xN , j . . . xN ,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×m

(5)

In this equation, X denotes the population matrix of Northern Goshawks, while Xi represents the
position vector of the i-th individual. The component Xi,j refers to the j-th dimension of the position of the
i-th Northern Goshawk. Here, N indicates the total number of individuals in the population, and m specifies
the dimensionality of the optimization problem. Within the Northern Goshawk Optimization algorithm,
the objective function is employed to evaluate each individual, producing objective function values for the
entire population. These values can be collectively expressed as an objective function value vector:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1
⋮

Fi
⋮

FN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (X1)
⋮

F (Xi)
⋮

F (XN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×1

(6)

In the aforementioned equation, F denotes the objective function vector of the Northern Goshawk
population, while Fi signifies the objective function value of the i-th Northern Goshawk.

4.2.2 Exploration Phase
The Northern Goshawk’s hunting strategy involves selecting prey randomly and quickly attacking it.

This phase’s random search space enhances the NGO algorithm’s exploration capability. The goal is to identify
the optimal region through a global search. In this phase, the behavior of prey selection and attack by the
Northern Goshawk is described by the following equation:

PI = Xk , i = 1, 2, . . . , i − 1, i + 1, . . . N (7)

xnew ,P1
i , j =

⎧⎪⎪⎨⎪⎪⎩

xi , j + r (pi , j − Ixi , j) , F pi < F

xi , j + r (xi , j − pi , j) , F pi ≥ F
(8)

Xi = { Xnew ,P1
i , Fnew ,P1

i < F
Xi , Fnew ,P1

i ≥ F (9)

In the above formula, Pi represents the position of the i-th Northern Goshawk’s prey; FPi denotes the
objective function value at the position of the i-th Northern Goshawk’s prey; k is a random integer within
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the range of [1, N]; Xnew ,P1
i is the new position of the i-th Northern Goshawk; Xnew ,P1

i . j represents the new
position of the i-th Northern Goshawk in the j-th dimension; Fnew ,P1

i is the objective function value of the
i-th Northern Goshawk after the update in Phase 1; r is a random number within the range of [0, 1]; and I is
a random integer that takes values 1 or 2.

4.2.3 Exploitation Phase
After the Northern Goshawk attacks its prey, the prey attempts to escape. Therefore, in the final stage of

chasing the prey, the Northern Goshawk must continue its pursuit. Due to the high speed of the Northern
Goshawk, it is capable of chasing and eventually capturing prey in almost any scenario. The simulation of
this behavior enhances the algorithm’s ability to conduct local searches within the search space. It is assumed
that this hunting activity is close to an attack position with a radius of R. In the second phase, this behavior
is described by the following formula:

xnew ,P2
i , j = xi , j + R (2r − 1) xi , j (10)

R = 0.02(1 − t
T
) (11)

Xi = { Xnew ,P2
i , Fnew ,P2

i < Fi
Xi , Fnew ,P2

i ≥ Fi
(12)

In the formula, t represents the current iteration number, and T denotes the maximum number of
iterations. Xnew ,P2

i is the new position of the i-th Northern Goshawk, while xnew ,P1
i refers to the new position

of the i-th Northern Goshawk in the j-th dimension. xP1
i , j represents the updated position of the i-th Northern

Goshawk in the j-th dimension after the second phase. Fnew ,P2
i indicates the objective function value of the

i-th Northern Goshawk after the update in the second phase.

5 Adaptive t-Distribution and Chaotic Mapping
In this subsection, we will introduce the Adaptive t-Distribution and Chaotic Mapping, Details are

presented in each subsection.

5.1 Adaptive t-Distribution
The t-distribution, also known as Student’s t-distribution, has a probability density function with a

degree of freedom parameter m, which is given by:

p (x) =
Γ (m+1

2 )
√

mπΓ (m
2 )

(1 + x2

2
)
− m+1

2

(13)

In this case, Γ (m+1
2 ) = ∫

+∞
0 x m+1

2 −1e−x dx refers to the second-type Euler integral. As m→∞, the t-
distribution converges to the Gaussian distribution, and as m→1, the t-distribution becomes a Cauchy
distribution. It is easy to understand that the Gaussian distribution and the normal distribution are two
boundary special cases of the t-distribution. The visualization diagram of the three distributions is shown
below in Fig. 1:



Comput Mater Contin. 2025 11

Figure 1: Three types of distributions. (a) Gaussian distribution (m→∞); (b) Cauchy distribution (m→1); (c) A
distribution when m is 2; (d) A distribution when m is 10 (equivalent to (c), both are intermediate values)

In the follower phase of the Sparrow Algorithm, t-distribution perturbation mutation is applied with
a certain probability. This not only does not alter the original update principle of the Sparrow Algorithm
but also enables the algorithm to possess strong global exploration capabilities in the early stages of
iteration while maintaining good local exploration ability in the later stages. As a result, this accelerates the
convergence speed of the Sparrow Algorithm.

5.2 Chaos Mapping
Experiments show that using chaos mapping to generate random numbers improves the fitness function

values. Replacing the uniform distribution random number generator with chaos mapping gets better
outcomes, especially when there are many local solutions in the search space, as it’s easier to find the global
optimum. This study uses Bernoulli and Sinusoidal chaos mapping to enhance the sparrow population diver-
sity. The Sinusoidal mapping’s solutions are more evenly distributed, making it suitable for fast convergence
on unimodal functions. The Bernoulli mapping’s solutions are more random, helping avoid local optima in
high-dimensional complex problems. The Bernoulli mapping’s randomness effectively expands the search
space and increases solution diversity, thereby enhancing the algorithm’s global search capabilities. This
allows the Sparrow Search Algorithm to better perform global exploration when dealing with multimodal
functions or complex optimization problems and avoid premature convergence. Combining these two types



12 Comput Mater Contin. 2025

of chaos mapping allows for more flexible adjustment of the balance between exploration and exploitation,
leading to better performance across various types of optimization problems.

5.2.1 Bernoulli Chaotic Mapping Formula

xk+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk

1 − β
, i f 0 ≤ xk < 1 − β

xk − (1 − β)
β

, i f 1 − β ≤ xk < 1
(14)

where β ∈ (0, 1) is the control parameter, usually β = 0.4.

5.2.2 Sinusoidal Chaotic Mapping Formula

xk+1 = (xk)2 ⋅ a sin (πxk) (15)

where a = 2.3, x(0) = 0.7.

6 Elitism Strategy
The Elitism Strategy, proposed by De Jong in the domain of Genetic Algorithms (GAs) [48], is a

mechanism designed to preserve high-quality individuals within a gene pool. The core principle of this
strategy involves directly retaining a subset of the fittest individuals (referred to as “elites”) in each generation.
These elite individuals are copied unchanged into the next generation, bypassing crossover and mutation
operations. Meanwhile, the remaining individuals undergo the standard selection, crossover, and mutation
processes to form the rest of the new population.

Strategy Principle
Let the population at generation t be denoted as P (t) = {x(t)

1 , x(t)
2 , . . . , x(t)

N }, where each individual
x(t)

i has a fitness value given by f (x(t)
i ). The elite set E(t) is formed by selecting the top kk individuals with

the highest fitness values from P(t):

E (t) = {x ∈ P (t) ∣ f (x) ≥ f (x(t)
j ) ,∀x(t)

j ∉ E (t)} (16)

where ∣E(t)∣ = k ≤ αN, with α representing the elitism ratio. At this stage, the next-generation population P(t
+ 1) consists of two components: the directly retained elite individuals E(t) and new individuals generated
through the optimization algorithm. The formulation is given by:

P (t + 1) = E (t) ∪ (GeneticOperations (P (t) /E (t))) (17)

where GeneticOperations represents the new individuals generated through the optimization algorithm, which
typically includes selection, crossover, and mutation operations. Subsequent to the execution of these
operations, the population individuals are arranged in descending order based on their fitness values. Finally,
if the algorithm consistently retains the historically best solution x(t)

best , then:

x(t+1)
best = argmax { f (x) ∣x ∈ P (x + 1) ∪ {x(t)

best}} (18)

This ensures that the algorithm does not lose the best solution found thus far, thereby preventing the loss
of high-quality solutions during the iterative process and maintaining the overall quality of the population.
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7 NTSSA Algorithm

This paper is based on the Sparrow Search Algorithm (SSA), integrating the Northern Goshawk Opti-
mization (NGO) and adaptive t-distribution mutation, resulting in the NTSSA algorithm. The algorithm’s
exploration strategy is based on the NGO, enhancing global search capabilities, while the introduction
of adaptive t-distribution mutation strikes a balance between exploratory and exploitative practices.
Additionally, Bernoulli and Sinusoidal chaotic mappings are used to generate the initial population.

7.1 Mathematical Model of the Algorithm
7.1.1 Chaotic Mapping Initialization

NTSSA utilizes the Bernoulli chaotic mapping or the Sinusoidal chaotic mapping to generate the initial
population. If the objective function is unimodal, the Sinusoidal chaotic mapping is used. If the objective
function is multimodal, the Bernoulli chaotic mapping is used. The formulas are as follows:

x(0)i , j = { lb j + b (i , j) ⋅ (ub j − lb j) , i f f (x) is unimodal
lb j + s (i , j) ⋅ (ub j − lb j) , i f f (x) is otherwise (19)

where x(0)i , j represents the initial position of the i-th individual in the j-th dimension; b (i , j) represents the
chaotic number generated by the Sinusoidal chaotic mapping, with a value range of [0, 1]; s (i , j) represents
the chaotic number generated by the Bernoulli chaotic mapping, with a value range of [0, 1]; lbj and ubj

represent the lower and upper bounds of the j-th dimension, respectively.

7.1.2 Integration of the NGO Exploration Strategy

To enhance the search adequacy of the discoverer model in the solution space and improve the solution
performance in optimization problems, the position update formula for the discoverer with R2 < ST is
replaced with the exploration stage position update formula of the Northern Goshawk Optimization (NGO).
This approach effectively improves the exploration capability of the SSA. The updated formula is as follows:

Xt+1
i , j =

⎧⎪⎪⎨⎪⎪⎩

Xt
i , j + r1 ⋅ (P − I ⋅ Xt

i , j) , i f R2 < ST
Xt

i , j + Q ⋅ L , i f R2 ≥ ST
(20)

In the formula, P represents the guiding position selected from the better individuals (if the current
individual has a poor fitness, then P = xbest; otherwise, a better individual is randomly selected); I ∈ {1, 2} is a
random integer used to control the direction; r1 ∈ [0, 1] represents a random number uniformly distributed.

7.1.3 Adaptive t-Distribution Mutation

In the joiner phase of the Sparrow Search Algorithm, a t-distribution perturbation mutation is applied
with a certain probability. This mutation does not alter the original update principle of the SSA, thereby
enabling the algorithm to maintain optimal global exploration capability in the early stages of iteration while
exhibiting strong local exploitation ability in the later stages. This phenomenon has been shown to accelerate
the convergence speed of the SSA. The formula is as follows:

x(t+1)
i = x(t)

best + trnd (v) ⋅ x(t)
best (21)
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In this context, trnd(v) denotes a random number derived from a t-distribution with v degrees of
freedom. The probability density function according to the t-distribution is as follows:

f (x; v) =
Γ ( v+1

2 )
√

vπΓ ( v
2)

(1 + x2

v
)
− v+1

2

(22)

The degrees of freedom v are adaptively adjusted as follows:

v = e4( t
M )

2
(23)

In the above equation, because of its growth rate first slow and then fast, in line with the requirements
of the previously mentioned “first broad and then refined”; coefficient 4 is used to adjust the growth rate, so
that when t = M, the formula is close to the Gaussian distribution, in practice, when v > 30, the t-distribution
and the Gaussian distribution is almost overlap, as shown in Fig. 2 below:

Figure 2: Dynamic t-distribution vs. theoretical limits

When t→0 (early iterations), v→1, the t distribution is close to the Cauchy distribution with heavy-tailed
property, which is favorable for global exploration (avoiding falling into a local optimum).

When t→M (late iterations), v→e4, the t-distribution is close to a Gaussian distribution with concen-
trated peaks, which facilitates local exploitation (fine tuning).

7.1.4 Elite Retention Strategy
In this paper, an innovative elite retention strategy is integrated into the population update mechanism.

By selectively retaining the most adaptive individuals from each generation, this approach effectively
addresses the problem of losing high-quality solutions during the iterations of the traditional SSA algorithm.
Specifically, after each iteration, the system automatically selects the top 10% of the elite individuals based on
fitness and directly retains their genotypes in the next generation.
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The adaptive retention ratio is adjusted according to the following formula, ensuring that the retention
ratio fluctuates dynamically between 5% and 15%, balancing development efficiency and the maintenance of
diversity.

Pe = 0.1 × (1 + sin (πt
M

)) (24)

The sinusoidal function has a smooth periodicity, which is suitable for the dynamic adjustment of the
strategy. The period of 2M is chosen to ensure that half of the cycle is completed within the total number of
iterations M, that is, from the initial to the end of the gradual increase and then slight fluctuations. The base
value of 0.1 ensures that a minimum of 5% of the elite is retained to prevent the loss of high-quality solutions,
and the amplitude of 0.1 restricts the proportion of the elite from fluctuating dynamically from 5% to 15% to
avoid a sudden drop in the diversity of the population [49].

Design of Elite Perturbation Operator:

x
′

e = xe + N (0, σt) (25)

where: σt = 0.01 ⋅ ∥ub−l b∥
t is used to introduce controllable noise while preserving the elite genes. This strategy

enhances the algorithm’s performance through the following mechanism:
Convergence Acceleration Mechanism: In single-modal function optimization, the optimal position

information carried by elite individuals forms an implicit gradient direction guide, ensuring that the
population maintains stable evolution along a clear fastest descent path.

Dynamic Balance Mechanism: The core anchor points formed by elite individuals, together with
the exploratory individuals generated by chaotic perturbations and t-distribution mutations, create a
“development-exploration” synergy.

Restart Protection Mechanism: When the algorithm becomes trapped in a local optimum, the elite
library provides high-quality initial solutions for population restart.

7.1.5 Random Perturbation
Random perturbation can enhance diversity and prevent the algorithm from getting stuck in local

optima. In this paper, 20 individuals are randomly selected for perturbation, as shown in the following
formula:

x(t+1)
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t)
best + randn ⋅ ∣x(t)

j − x(t)
best∣ , i f f (x(t)

j ) > fmin

x(t)
j + (2⋅rand−1)⋅∣x(t)

j −x(t)
worst ∣

f (x(t)
j )− fmax+�

, otherwise
(26)

7.2 Theoretical Analysis
Although NTSSA is a stochastic metaheuristic, we provide a theoretical justification for its convergence

properties. Let P (t) = {x(t)
1 , . . . , x(t)

po p} be the population at iteration t, and let the best-so-far solution be:

x∗t = arg min
x∈P(t)

f (x) (27)

where f (x) is the objective function. Due to elitist preservation in NTSSA, the best fitness value is
monotonically non-increasing:

f (x∗t+1) ≤ f (x∗t ) ,∀t (28)
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Assuming f (x) is bounded below (i.e., ∃ f inf > ∞), the sequence { f (x∗t )} converges:

lim
t→∞

f (x∗t ) = f ∗ (29)

Moreover, the incorporation of adaptive mutation and chaotic initialization ensures that P(t) maintains
sufficient diversity, which, under mild ergodicity assumptions, allows the algorithm to approximate global
optima asymptotically in probability.

Therefore, NTSSA converges in the probabilistic weak sense, which is consistent with theoretical results
established for other metaheuristic frameworks such as PSO and DE. NTSSA Pseudocode is shown in
Algorithm 1.

Algorithm 1: Pseudo-code of NTSSA framework
Input: Population size pop, Max iterations M,
1: Boundary parameters c, d, Dimension dim,
2: Obiective function fobj
Output: Optimal value fMin. Best solution bestX.
3: Convergence curve Convergence_curve
4: Initialize Ppercent ← 0.2 ▷ Producer ratio
5: pNum ← round(pop × Ppercent)
6: Calculate bounds: lb ← c ⋅ 1dim, ub ← d ⋅ 1dim
7: Chaotic initialization:
8: if fobj is unimodal then
9: Select Sinusoidal map (Type 6)
10: else
11: Select Bernoulli map (Type 10)
12: end if
13: Generate x ← ChaoticMap(chaos_type, pop, dim, lb, ub)
14: Evaluate initial ftness: fit ← fobj(x)
15: [f Min,bestI] ← min(fit)
16: bestX ← x[bestI,:]
17: for t = 1 to M do ▷ Main loop
18: Sort population: [sorted_fit,sorted_inder] ← sort(fit)
19: Producer phase:
20: for i = l to pNum do
21: if rand < 0.8 then ▷ Exploitation
22: Update position using best producer
23: xi ← UpdatePosition(xi, bestX)
24: else ▷ Exploration
25: xi ← xi + N (0, 1) ▷ Random perturbation
26: end if
27: Update fitness fit[i] ← fobj(xi)
28: end for
29: Scouter phase:
30: for i = pNum + 1 to pop do

(Continued)
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Algorithm 1 (continued)
31: Apply adaptive mutation:
32: xi ← Mutate (xi, bestX, t/M)
33: Update fitness fit[i] ← fobj(xi)
34: end for
35: Elite preservation:
36: for j = 1 to 0.1⋅pop do ▷ Top 10%
37: Refne elite solution locally
38: xj ← LocalSearch(xj)
39: Update fitness fit[i] ← fobj(xi)
40: end for
41: Update [f Min, bestI] and bestX
42: Record Convergence_curve[t] ← fMin
43: end for

8 Algorithm Performance Testing
This study compares NTSSA with four standard algorithms (SSA, GWO, NGO, and HHO) and two

enhanced variants of the sparrow algorithm (ISSA and CSSOA). The comparison uses 23 benchmark
functions (F1–F23) from the CEC2005 test suite. These include unimodal (F1–F7), multimodal (F8–F13),
and fixed-dimensional multimodal (F14–F23) functions with a dimensionality of 30. All experiments are
performed in the same computational environment (MATLAB 2017b on Microsoft Windows 11) to ensure
consistency and fairness. Uniform parameters are applied across all algorithms, with a population size of 50,
a maximum of 500 iterations, and 50 independent runs for each algorithm.

To verify NTSSA’s superiority, it is compared with six other algorithms using performance metrics,
including mean values and standard deviations, to assess the effectiveness of the algorithms. Statistical
analysis is performed by examining the results of multiple runs. However, due to the randomness of the
Moving Average method (MAs), non-parametric tests are used to ensure the robustness and reliability of
the algorithms.

8.1 CEC2005 Test Functions
Single-modal functions have a single global optimum. Their purpose is to evaluate an algorithm’s

exploitation capability. Multi-modal functions have multiple optima, with one being the global optimum
and the others being local optima. These functions assess an algorithm’s exploration capability. Finally,
multi-modal functions have low dimensions and fewer local optima, allowing for balanced evaluation of the
algorithm’s exploration ability during local and global search processes. Table 1 and Fig. 3 present the basic
parameters of the CEC2005 test functions and their three-dimensional visualization effects.

Table 1: Summary of the CEC2005 test functions

Name Functions n S Fmin

F1 f1 (y) = ∑n
i=1 y2

i 30 [−100, 100] 0
F2 f2 (y) = ∑n

i=1 ∣yi ∣ + ∏n
i=1 ∣yi ∣ 30 [−10, 00] 0

F3 f3 (y) = ∑n
i=1 (∑i

j=1 y2
j) 30 [−100, 100] 0

F4 f4 (y) = maxi {∣yi ∣, 1 ≤ i ≤ n} 30 [−100, 100] 0

(Continued)
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Table 1 (continued)

Name Functions n S Fmin

F5 f5 (y) = ∑n−1
i=1 [100 (yi+1 − y2

i )
2 + (yi − 1)2] 30 [−30, 30] 0

F6 f6 (y) = ∑n
i=1 ([yi + 0.5])2 30 [−100, 100] 0

F7 f7 (y) = ∑n
i=1 y4

i + rand [0, 1) 30 [−1.28, 1.28] 0
F8 f8 (y) = ∑n

i=1 yi sin(
√
∣yi ∣) 30 [−500, 500] −12,569.5

F9 f9 (y) = ∑n
i=1 [y2

i − 10 cos (2πyi) + 10] 30 [−5.12, 5.12] 0

F10 f10 (y) = −20 exp(−0.2
√

1
n ∑n

i=1 y2
i ) −

exp ( 1
n ∑n

i=1 cos (2πyi)) + 20 + e

30 [−32, 32] 0

F11 f11 (y) = 1
4000 ∑

n
i=1 y2

i −∏n
i=1 cos( yi√

i
) + 1 30 [−600, 600] 0

F12

f12 (y) = π
n {10 sin (πz1) +∑N

I=1 (zi − 1)2

[1 + sin2 (πzi+1)] + (zn − 1)2}
+∑n

i=1 u (yi , 10, 100, 4)
zi = 1 + yi+1

4 ; u (yi , a, k, m)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k (yi − a)m i f yi > a
0 i f − a ≤ yi ≤ a
k (−yi − a)m i f yi < −a

30 [−50, 50] 0

F13
f13 (y) = 0.1{sin2 (3πy1) +∑n

i=1 (yi − 1)2

[1 + sin2 (3πyi+1)] + (yn − 1)2 [1 + sin2 (2πyn)]}
+∑n

i=1 u (yi , 5, 100, 4)
30 [−50, 50] 0

F14 f14 (y) = [ 1
500 +∑25

j=1
1

j+∑2
i=1(yi−ai j)6 ]

−1
2 [−65.53,

65.53]
1

F15 f15 (y) = ∑n
i=1 ∣ai −

y1(b2
i +bi y2)

b2
i +bi y3+y4

∣2 4 [−5, 5] 0.0003
F16 f16 (y) = 4y2

1 − 2.1y4
1 + 1/3y6

1 + y1 y2 − 4y2
2 + 4y4

2 2 [−5, 5] −1.0316
F17 f17 (y) = (y2 − 5.1

4π2 y2
1 + 5

π y1 − 1)2 + 10 (1 − 1
8π ) cos y1 + 10 2 [−5, 5] 0.398

F18

f18 (y) = [1 + (y1 + y2 + 1)2

(19 − 14y1 + 3y2
1 − 14y2 + 6y1 y2 + 3y2

2)]

× [30 (2y1 − 3y2)2 (18 − 32y1 + 12y2
1

+48y2 − 36y1 y2 + 27y2
2)]

2 [−2, 2] 3.000

F19 f19 (y) = −∑4
i=1 ci ex p (−∑3

j=1 ai j (y j − pi j)
2) 3 [0, 1] −3.86

F20 f20 (y) = ∑4
i=1 ci ex p (−∑6

j=1 ai j (y j − pi j)
2) 6 [0, 1] −3.32

F21 f21 (y) = ∑5
i=1 ∣ (yi − ai) (yi − ai)T + ci ∣−1 4 [0, 10] −10.1532

F22 f22 (y) = ∑7
i=1 ∣ (yi − ai) (yi − ai)T + ci ∣−1 4 [0, 10] −10.4028

F23 f23 (y) = ∑10
i=1 ∣ (yi − ai) (yi − ai)T + ci ∣−1 4 [0, 10] −10.5363
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Figure 3: 3D depictions of the CEC2005 test functions

8.2 Algorithm Performance Comparison and Analysis
This study evaluated and compared seven algorithms, including NTSSA, using 23 benchmark functions

from the CEC2005 test suite. Each function was independently run 50 times per algorithm. The best
(optimal) value, worst value, mean, and standard deviation were computed for every set of runs to provide
a performance overview. The experimental results are summarized in Table 2 below:
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Table 2: (a) Comparative assessment of NTSSA on CEC2005 test functions against other algorithms; (b) Continuation
of the above table; (c) Continuation of the above table

(a)

Function F1 F2 F3 F4 F5 F6 F7 F8

SSA_Worst 3.45E−126 5.79E−67 9.33E−81 2.17E−75 2.02E−04 1.78E−07 1.78E−03 −6.78E+03
SSA_Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.42E−09 1.08E−12 1.48E−05 −9.80E+03

SSA_Mean 6.91E−128 1.21E−68 2.20E−82 4.36E−77 1.93E−05 1.47E−08 4.11E−04 −8.47E+03
SSA_Std 4.88E−127 8.19E−68 1.33E−81 3.07E−76 4.07E−05 2.91E−08 3.50E−04 6.43E+02

NTSSA_Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.15E−05 5.19E−09 1.19E−03 −7.66E+03
NTSSA_Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.89E−06 −1.26E+04

NTSSA_Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.53E−07 1.06E−10 2.96E−04 −1.14E+04
NTSSA_Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.63E−06 7.34E−10 2.59E−04 1.57E+03
NGO_Worst 5.72E−88 2.40E−45 2.41E−21 5.92E−33 2.62E+01 7.09E−01 9.51E−04 −6.85E+03
NGO_Best 8.26E−91 7.17E−47 2.70E−27 2.04E−34 2.43E+01 2.04E−02 1.17E−04 −8.94E+03

NGO_Mean 8.45E−89 6.54E−46 1.40E−22 1.65E−33 2.55E+01 1.57E−01 4.60E−04 −7.86E+03
NGO_Std 1.24E−88 4.80E−46 4.60E−22 1.19E−33 3.76E−01 1.55E−01 1.87E−04 4.61E+02

GWO_Worst 1.54E−85 2.87E−47 4.54E−17 9.69E−01 2.79E+01 2.75E+00 3.58E−03 −2.98E+03
GWO_Best 1.71E−91 1.26E−50 5.88E−29 7.06E−05 2.50E+01 5.00E−01 2.13E−04 −7.98E+03

GWO_Mean 9.16E−87 1.20E−48 9.14E−19 4.41E−02 2.66E+01 1.78E+00 1.27E−03 −6.03E+03
GWO_Std 3.19E−86 4.18E−48 6.42E−18 1.49E−01 6.30E−01 5.19E−01 7.94E−04 9.91E+02

HHO_Worst 6.49E−87 2.37E−59 3.43E+00 3.10E−04 1.73E−01 4.29E−03 1.26E−03 −8.68E+03
HHO_Best 1.15E−159 2.26E−82 8.81E−06 3.74E−13 1.99E−07 9.69E−09 2.70E−06 −1.26E+04

HHO_Mean 1.30E−88 5.36E−61 4.55E−01 2.04E−05 1.90E−02 5.75E−04 1.69E−04 −1.24E+04
HHO_Std 9.17E−88 3.36E−60 7.55E−01 5.60E−05 3.26E−02 7.88E−04 2.49E−04 7.71E+02

ISSA_Worst 0.00E+00 1.39E−161 4.12E−305 5.18E−127 2.86E−08 1.28E−08 7.59E−04 −2.26E+03
ISSA_Best 0.00E+00 7.89E−178 0.00E+00 6.74E−149 0.00E+00 0.00E+00 6.92E−06 −9.02E+03

ISSA_Mean 0.00E+00 3.01E−163 8.25E−307 1.18E−128 1.56E−09 1.02E−09 1.59E−04 −5.06E+03
ISSA_Std 0.00E+00 2.22E−162 0.00E+00 7.34E−128 5.79E−09 3.09E−09 1.71E−04 1.89E+03

CSSOA_Worst 0.00E+00 0.00E+00 0.00E+00 4.19E−275 5.46E−04 5.67E−06 5.00E−04 −5.84E+03
CSSOA_Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.31E−16 1.25E−15 8.05E−07 −1.26E+04

CSSOA_Mean 0.00E+00 0.00E+00 0.00E+00 8.39E−277 3.12E−05 1.58E−07 9.57E−05 −1.11E+04
CSSOA_Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.80E−05 8.11E−07 8.98E−05 2.33E+03

(b)

Function F9 F10 F11 F12 F13 F14 F15 F16

SSA_Worst 0.00E+00 8.88E−16 0.00E+00 4.84E−11 8.22E−10 1.27E+01 6.24E−04 −1.03E+00
SSA_Best 0.00E+00 8.88E−16 0.00E+00 2.30E−15 1.04E−14 9.98E−01 3.07E−04 −1.03E+00

SSA_Mean 0.00E+00 8.88E−16 0.00E+00 2.55E−12 7.11E−11 3.76E+00 3.16E−04 −1.03E+00
SSA_Std 0.00E+00 0.00E+00 0.00E+00 8.21E−12 1.81E−10 4.82E+00 4.67E−05 3.04E−16

NTSSA_Worst 0.00E+00 8.88E−16 0.00E+00 6.53E−17 8.73E−19 2.98E+00 1.22E−03 −1.03E+00
NTSSA_Best 0.00E+00 8.88E−16 0.00E+00 1.57E−32 1.35E−32 9.98E−01 3.07E−04 −1.03E+00

NTSSA_Mean 0.00E+00 8.88E−16 0.00E+00 2.42E−18 1.75E−20 1.08E+00 3.32E−04 −1.03E+00
NTSSA_Std 0.00E+00 0.00E+00 0.00E+00 1.20E−17 1.23E−19 3.93E−01 1.35E−04 3.71E−16
NGO_Worst 0.00E+00 7.99E−15 0.00E+00 7.45E−07 3.51E−01 9.98E−01 3.08E−04 −1.03E+00
NGO_Best 0.00E+00 4.44E−15 0.00E+00 7.29E−08 2.60E−04 9.98E−01 3.07E−04 −1.03E+00

NGO_Mean 0.00E+00 5.86E−15 0.00E+00 1.80E−07 7.75E−02 9.98E−01 3.08E−04 −1.03E+00
NGO_Std 0.00E+00 1.76E−15 0.00E+00 1.09E−07 7.91E−02 0.00E+00 6.36E−08 2.37E−16

GWO_Worst 1.03E+01 2.93E−14 4.04E−02 4.99E−02 8.13E−01 1.27E+01 2.04E−02 −1.03E+00
GWO_Best 0.00E+00 1.51E−14 0.00E+00 6.75E−03 7.87E−02 9.98E−01 3.07E−04 −1.03E+00

GWO_Mean 6.62E−01 2.01E−14 4.61E−03 3.32E−02 3.58E−01 4.93E+00 8.37E−03 −1.03E+00
GWO_Std 1.91E+00 3.87E−15 9.79E−03 9.67E−03 1.97E−01 4.38E+00 9.89E−03 4.42E−09

HHO_Worst 0.00E+00 7.99E−15 0.00E+00 7.58E−05 2.32E−03 9.98E−01 1.51E−03 −1.03E+00
HHO_Best 0.00E+00 8.88E−16 0.00E+00 7.03E−08 5.81E−08 9.98E−01 3.08E−04 −1.03E+00

HHO_Mean 0.00E+00 3.45E−15 0.00E+00 9.21E−06 1.22E−04 9.98E−01 4.22E−04 −1.03E+00
HHO_Std 0.00E+00 2.69E−15 0.00E+00 1.40E−05 3.32E−04 7.36E−11 2.91E−04 1.59E−09

ISSA_Worst 0.00E+00 4.44E−15 0.00E+00 8.16E−10 6.55E−07 1.27E+01 3.85E−04 −1.03E+00
ISSA_Best 0.00E+00 8.88E−16 0.00E+00 1.57E−32 1.35E−32 9.98E−01 3.07E−04 −1.03E+00

ISSA_Mean 0.00E+00 1.03E−15 0.00E+00 1.77E−11 1.31E−08 1.66E+00 3.26E−04 −1.03E+00
ISSA_Std 0.00E+00 7.03E−16 0.00E+00 1.15E−10 9.26E−08 2.34E+00 2.18E−05 3.21E−10

CSSOA_Worst 0.00E+00 8.88E−16 0.00E+00 1.82E−07 1.56E−06 1.27E+01 3.97E−04 −1.03E+00
CSSOA_Best 0.00E+00 8.88E−16 0.00E+00 8.09E−16 1.72E−15 9.98E−01 3.08E−04 −1.03E+00

CSSOA_Mean 0.00E+00 8.88E−16 0.00E+00 6.62E−09 5.19E−08 5.54E+00 3.35E−04 −1.03E+00
CSSOA_Std 0.00E+00 0.00E+00 0.00E+00 2.79E−08 2.27E−07 5.27E+00 2.27E−05 1.35E−05

(Continued)
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Table 2 (continued)
(c)

Function F17 F18 F19 F20 F21 F22 F23 F17

SSA_Worst 3.98E−01 3.00E+01 −3.86E+00 −3.20E+00 −5.06E+00 −5.09E+00 −5.13E+00 3.98E−01
SSA_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

SSA_Mean 3.98E−01 3.54E+00 −3.86E+00 −3.27E+00 −9.75E+00 −1.02E+01 −1.00E+01 3.98E−01
SSA_Std 3.36E−16 3.82E+00 2.99E−15 5.93E−02 1.40E+00 1.05E+00 1.64E+00 3.36E−16

NTSSA_Worst 3.98E−01 3.00E+01 −3.86E+00 −3.20E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01
NTSSA_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

NTSSA_Mean 3.98E−01 4.08E+00 −3.86E+00 −3.28E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01
NTSSA_Std 3.36E−16 5.34E+00 2.83E−15 5.69E−02 7.76E−15 7.49E−15 9.98E−15 3.36E−16
NGO_Worst 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01
NGO_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

NGO_Mean 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01
NGO_Std 3.36E−16 2.94E−15 3.14E−15 7.21E−16 1.94E−06 1.43E−07 1.47E−14 3.36E−16

GWO_Worst 3.98E−01 3.00E+00 −3.85E+00 −3.08E+00 −2.63E+00 −5.09E+00 −1.05E+01 3.98E−01
GWO_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

GWO_Mean 3.98E−01 3.00E+00 −3.86E+00 −3.26E+00 −9.09E+00 −1.02E+01 −1.05E+01 3.98E−01
GWO_Std 8.53E−05 1.41E−05 2.75E−03 8.01E−02 2.17E+00 1.05E+00 1.63E−04 8.53E−05

HHO_Worst 3.98E−01 3.00E+00 −3.86E+00 −2.96E+00 −3.85E+00 −4.87E+00 −2.33E+00 3.98E−01
HHO_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −9.92E+00 −1.00E+01 −1.05E+01 3.98E−01

HHO_Mean 3.98E−01 3.00E+00 −3.86E+00 −3.21E+00 −5.13E+00 −5.22E+00 −5.18E+00 3.98E−01
HHO_Std 1.06E−05 2.26E−06 3.57E−04 7.41E−02 8.90E−01 9.89E−01 1.14E+00 1.06E−05

ISSA_Worst 3.98E−01 3.00E+00 −3.86E+00 −2.78E+00 −5.06E+00 −5.09E+00 −1.05E+01 3.98E−01
ISSA_Best 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

ISSA_Mean 3.98E−01 3.00E+00 −3.86E+00 −3.12E+00 −9.64E+00 −1.02E+01 −1.05E+01 3.98E−01
ISSA_Std 3.36E−16 6.80E−14 2.77E−15 1.31E−01 1.54E+00 1.05E+00 6.41E−03 3.36E−16

CSSOA_Worst 3.99E−01 3.00E+00 −3.86E+00 −3.04E+00 −5.33E+00 −5.23E+00 −5.29E+00 3.99E−01
CSSOA_Best 3.98E−01 3.00E+00 −3.86E+00 −3.31E+00 −1.02E+01 −1.04E+01 −1.05E+01 3.98E−01

CSSOA_Mean 3.98E−01 3.00E+00 −3.86E+00 −3.16E+00 −9.50E+00 −8.87E+00 −9.79E+00 3.98E−01
CSSOA_Std 2.77E−04 9.88E−05 8.39E−04 6.62E−02 1.05E+00 1.64E+00 1.22E+00 2.77E−04

The NTSSA algorithm shows significant advantages in stability and global convergence accuracy. In
the single-peak benchmark function, multiple independent runs of NTSSA converge to the theoretical
optimum with standard deviation indicating its robustness to zero fluctuation. In multi-peak and complex
functions, the worst value of NTSSA significantly out-performs the comparative algorithms, verifying the
effectiveness of its improvement strategy. NTSSA achieves the optimal or sub-optimal mean in 19 out of 23
tested functions, ranking first in the overall rankings.

Taking the best result out of 50 times, the following Table 3 was obtained:

Table 3: Optimal results for each algorithm out of 50 run results

Function SSA_Best NTSSA_Best NGO_Best GWO_Best HHO_Best ISSA_Best CSSOA_Best
F1 0.000E+00 0.000E+00 8.258E−91 1.706E−91 1.153E−159 0.000E+00 0.000E+00
F2 0.000E+00 0.000E+00 7.167E−47 1.263E−50 2.264E−82 7.888E−178 0.000E+00
F3 0.000E+00 0.000E+00 2.699E−27 5.880E−29 8.809E−06 0.000E+00 0.000E+00
F4 0.000E+00 0.000E+00 2.037E−34 7.064E−05 3.740E−13 6.742E−149 0.000E+00
F5 1.417E−09 0.000E+00 2.431E+01 2.499E+01 1.986E−07 0.000E+00 1.310E−16
F6 1.079E−12 0.000E+00 2.041E−02 4.998E−01 9.688E−09 0.000E+00 1.254E−15
F7 1.476E−05 2.885E−06 1.170E−04 2.132E−04 2.697E−06 6.918E−06 8.047E−07
F8 −9.803E+03 −1.257E+04 −8.943E+03 −7.976E+03 −1.257E+04 −9.016E+03 −1.257E+04
F9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F10 8.882E−16 8.882E−16 4.441E−15 1.510E−14 8.882E−16 8.882E−16 8.882E−16
F11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F12 2.295E−15 1.571E−32 7.285E−08 6.745E−03 7.030E−08 1.571E−32 8.090E−16
F13 1.037E−14 1.350E−32 2.604E−04 7.874E−02 5.814E−08 1.350E−32 1.723E−15

(Continued)
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Table 3 (continued)

Function SSA_Best NTSSA_Best NGO_Best GWO_Best HHO_Best ISSA_Best CSSOA_Best
F14 9.980E−01 9.980E−01 9.980E−01 9.980E−01 9.980E−01 9.980E−01 9.980E−01
F15 3.075E−04 3.075E−04 3.075E−04 3.075E−04 3.078E−04 3.075E−04 3.083E−04
F16 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00
F17 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01
F18 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
F19 −3.863E+00 −3.863E+00 −3.863E+00 −3.863E+00 −3.863E+00 −3.863E+00 −3.863E+00
F20 −3.322E+00 −3.322E+00 −3.322E+00 −3.322E+00 −3.318E+00 −3.320E+00 −3.307E+00
F21 −1.015E+01 −1.015E+01 −1.015E+01 −1.015E+01 −9.915E+00 −1.015E+01 −1.015E+01
F22 −1.040E+01 −1.040E+01 −1.040E+01 −1.040E+01 −1.002E+01 −1.040E+01 −1.040E+01
F23 −1.054E+01 −1.054E+01 −1.054E+01 −1.054E+01 −1.052E+01 −1.054E+01 −1.054E+01

Note: The optimal values are highlighted in bold.

From Table 3 above, it can be seen that the proposed NTSSA algorithm exhibits outstanding perfor-
mance across various function categories in the CEC2005 benchmark. For unimodal functions (F1–F7),
NTSSA achieves the theoretical optimal value (0.000E+00) in F1–F6, significantly outperforming traditional
algorithms such as NGO and GWO (e.g., F5: NTSSA = 0 vs. NGO = 24.31). In F7, although NTSSA slightly
lags behind CSSOA (8.047E−07), it still reaches 2.885E−06, demonstrating high precision and strong local
exploitation capabilities.

For multimodal functions (F8-F13), NTSSA shows excellent global search capabilities: in F8, it reaches
−1.257E+04 (on par with HHO and CSSOA), and in F12 (1.571E−32) and F13 (1.350E−32), it approaches zero,
surpassing its competitors by several orders of magnitude (e.g., F12: NGO = 7.285E−08, GWO = 6.745E−03).
This highlights its effectiveness in escaping local optima. For fixed-dimensional multimodal functions (F14-
F23), NTSSA maintains stability, performing comparably to other algorithms in F14-F19, and excelling in
F21-F23 (e.g., F21 = −1.015E+01 vs. HHO = −9.915E+00).

F7 and F20 show minor limitations, suggesting parameter sensitivity improvement. F7 (high-
dimensional single peak) has slightly inferior convergence accuracy of NTSSA over CSSOA. This is due to
the adaptive t-distribution approximating the Gaussian distribution too soon in the late iteration, which
restricts ability to capture subtle gradients in high-dimensional space. CSSOA’s golden sinusoidal mechanism
approaches the optimal solution more efficiently through symmetric interval contraction. To solve this, the
growth rate of the degrees of freedom can be reduced by decreasing the growth rate of the degrees of freedom
(e.g., by decreasing the coefficients to 2) to retard the Gaussianization process. In F20 (fixed dimension multi-
peaks), NTSSA over-preserves the historical optimal solution, leading to decreased population diversity.
CSSOA better maintains solution space exploration. The elite proportion can be made more stable in the
medium term by adjusting the phase of the sinusoidal function in the elite retention strategy.

However, NTSSA still balances the dynamics of exploration and exploitation well, and the dynamic
balance of exploration-exploitation under the multi-strategy collaborative optimization framework still
has a significant advantage, especially in the high-dimensional complex solution space and multi-peak
optimization problems.

8.3 Comparison of Algorithm Convergence Curves
The convergence curves of the benchmark test functions illustrate the convergence speed of the

algorithms, the accuracy of the solutions, and the ability to escape local optima. As illustrated in Fig. 4, the
convergence trajectories for all 23 benchmark functions are depicted, with d set at 30. The vertical axis shows
the fitness value, and the horizontal axis indicates the value of iterations.
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Figure 4: Convergence curves for 23 benchmark functions
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The NTSSA algorithm generally demonstrates faster convergence and smoother performance across
different benchmark functions, as shown by the convergence curves. A lower fitness value on the vertical axis
reflects higher optimization accuracy, while the earlier emergence of a turning point on the curve indicates
a quicker convergence toward the optimal solution.

8.4 Wilcoxon Rank-Sum Test
The results obtained from 50 independent runs alone cannot fully demonstrate the superiority of

NTSSA, and statistical verification is required. Therefore, in this study, we will perform additional statistical
analyses. When p < 5%, the null hypothesis (H0) is rejected, indicating a significant difference between
the two algorithms. When p > 5%, the null hypothesis is accepted, indicating that the two algorithms are
not significantly different. Conversely, when p < 5%, the null hypothesis is rejected, suggesting a significant
difference between the two algorithms and implying that their optimization capabilities are comparable.

Table 4 below presents the significance levels (p = 5%) for NTSSA and several other algorithms under
different test functions, with each algorithm run 50 times:

A p-value less than 0.05 indicates a significant difference between the two algorithms. When the p-value
exceeds 0.05, it is deduced that there is no statistically significant discrepancy between the two groups. As
illustrated in the above table, NTSSA exhibits a substantial superiority in the majority of the comparisons,
particularly in relation to NGO, GWO, HHO, and CSSOA. However, a comparative analysis reveals that
NTSSA exhibits comparable performance to SSA and ISSA in specific features.

To further verify the performance differences between NTSSA and other algorithms, if a significant
difference is found between the algorithms, the median of NTSSA will be compared with those of the other
algorithms. If the median of NTSSA is smaller than that of another algorithm, it indicates that NTSSA
performs worse; if the median of NTSSA is greater than or equal to that of the other algorithm, it indicates
that NTSSA performs better. This analysis is visualized in the following heatmap (Fig. 5), where 0 indicates
equal performance, −1 indicates NTSSA performs better, and 1 indicates NTSSA performs worse.

From the heatmap, it can be observed that NTSSA outperforms or is at least equal to other algorithms
in the majority of test functions. Only in a few cases, such as in the F7 and F8 test functions, does NTSSA
perform slightly worse than improved algorithms like CSSOA and ISSA. However, in the case of multimodal
functions, NTSSA consistently maintains its leading position.



Comput Mater Contin. 2025 25

Ta
bl

e4
:W

-te
st

re
su

lts

Fu
nc

tio
ns

N
TS

SA
vs

.S
SA

N
TS

SA
vs

.N
G

O
N

TS
SA

vs
.G

W
O

N
TS

SA
vs

.H
H

O
N

TS
SA

vs
.I

SS
A

N
TS

SA
vs

.C
SS

O
A

p-
Va

lu
es

U
p-

Va
lu

es
U

p-
Va

lu
es

U
p-

Va
lu

es
U

p-
Va

lu
es

U
p-

Va
lu

es
U

F1
5.

95
E−

01
6.

20
E+

02
6.

81
E−

18
0.

00
E+

00
6.

81
E−

18
0.

00
E+

00
2.

39
E−

17
2.

10
E+

01
7.1

6E
−

15
2.

25
E+

03
7.1

6E
−

15
2.

25
E+

03
F2

4.
57

E−
01

6.
38

E+
02

7.0
5E
−

18
0.

00
E+

00
7.0

5E
−

18
0.

00
E+

00
2.

29
E−

15
1.0

0E
+

02
9.9

0E
−

09
2.

08
E+

03
5.

97
E−

18
2.

40
E+

03
F3

4.
57

E−
01

6.
38

E+
02

7.0
5E
−

18
0.

00
E+

00
7.0

5E
−

18
0.

00
E+

00
7.0

5E
−

18
0.

00
E+

00
1.7

3E
−

17
2.

40
E+

03
5.

97
E−

18
2.

40
E+

03
F4

4.
36

E−
01

6.
41

E+
02

7.0
6E
−

18
0.

00
E+

00
7.0

6E
−

18
0.

00
E+

00
7.0

6E
−

18
0.

00
E+

00
7.0

7E
−

01
1.3

1E
+

03
2.

90
E−

18
2.

42
E+

03
F5

1.1
6E
−

04
9.0

0E
+

02
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
1.2

7E
−

16
4.

90
E+

01
8.

79
E−

18
2.

50
E+

03
2.

81
E−

05
1.8

6E
+

03
F6

1.1
6E
−

04
9.0

0E
+

02
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
2.

07
E−

17
1.8

0E
+

01
5.

23
E−

13
2.

30
E+

03
1.7

9E
−

04
1.7

9E
+

03
F7

4.
90

E−
06

9.6
0E
+

02
3.

83
E−

02
9.4

9E
+

02
2.

81
E−

11
2.

84
E+

02
2.

05
E−

07
2.

00
E+

03
1.7

5E
−

06
1.9

4E
+

03
1.2

9E
−

10
2.

18
E+

03
F8

4.
66

E−
10

5.
00

E+
01

5.
30

E−
07

5.
22

E+
02

3.
74

E−
17

2.
80

E+
01

2.
47

E−
17

2.
48

E+
03

3.
28

E−
14

1.4
9E
+

02
1.1

7E
−

07
2.

02
E+

03
F9

4.
17

E−
01

5.
25

E+
02

1.0
0E
+

00
1.2

5E
+

03
7.2

2E
−

08
6.

75
E+

02
1.0

0E
+

00
1.2

5E
+

03
1.0

0E
+

00
1.2

5E
+

03
1.0

0E
+

00
1.2

5E
+

03
F1

0
1.1

7E
−

05
8.

75
E+

02
5.

56
E−

21
0.

00
E+

00
1.5

4E
−

20
0.

00
E+

00
2.

22
E−

09
5.

75
E+

02
1.5

9E
−

01
1.2

0E
+

03
1.0

0E
+

00
1.2

5E
+

03
F1

1
4.

17
E−

01
5.

25
E+

02
1.0

0E
+

00
1.2

5E
+

03
4.

94
E−

04
9.7

5E
+

02
1.0

0E
+

00
1.2

5E
+

03
1.0

0E
+

00
1.2

5E
+

03
1.0

0E
+

00
1.2

5E
+

03
F1

2
1.1

5E
−

04
9.0

0E
+

02
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
2.

95
E−

11
2.

21
E+

03
2.

50
E−

03
8.

11
E+

02
F1

3
3.

12
E−

04
8.

79
E +

02
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
7.0

7E
−

18
0.

00
E+

00
1.9

5E
−

12
2.

27
E+

03
2.

45
E−

06
5.

66
E+

02
F1

4
1.4

0E
−

10
1.1

0E
+

03
1.7

0E
−

07
1.8

0E
+

03
1.1

5E
−

06
5.

52
E+

02
1.2

7E
−

04
7.0

0E
+

02
6.

63
E−

05
6.

78
E+

02
4.

07
E−

06
5.

92
E+

02
F1

5
8.

50
E−

07
9.9

0E
+

02
5.

42
E−

13
2.

03
E+

02
8.

38
E−

16
8.

20
E+

01
6.

89
E−

15
1.2

0E
+

02
2.

94
E−

13
1.9

1E
+

02
1.4

7E
−

14
1.3

4E
+

02
F1

6
6.

65
E−

04
3.

07
E+

02
1.1

5E
−

03
1.5

5E
+

03
1.0

0E
−

18
0.

00
E+

00
1.0

0E
−

18
0.

00
E+

00
1.1

0E
−

09
4.

79
E+

02
1.0

0E
−

18
0.

00
E+

00
F1

7
4.

78
E−

11
1.0

3E
+

03
1.0

0E
+

00
1.2

5E
+

03
3.

31
E−

20
0.

00
E+

00
3.

31
E−

20
0.

00
E+

00
1.0

0E
+

00
1.2

5E
+

03
3.

31
E−

20
0.

00
E+

00
F1

8
6.

46
E−

12
1.1

4E
+

03
7.8

1E
−

03
1.5

7E
+

03
6.

09
E−

17
5.

00
E+

01
6.

09
E−

17
5.

00
E+

01
1.4

7E
−

14
1.5

0E
+

02
6.

09
E−

17
5.

00
E+

01
F1

9
4.

61
E−

06
2.

09
E+

02
3.

22
E−

06
1.7

0E
+

03
1.5

7E
−

18
0.

00
E+

00
1.5

7E
−

18
0.

00
E+

00
6.

29
E−

06
6.

82
E+

02
1.5

7E
−

18
0.

00
E+

00
F2

0
3.

66
E−

04
2.

86
E+

02
1.5

3E
−

06
1.7

7E
+

03
3.

79
E−

06
5.

88
E+

02
4.

46
E−

10
3.

57
E+

02
8.

84
E−

12
2.

73
E+

02
1.1

0E
−

12
2.

31
E+

02
F2

1
5.

22
E−

07
1.7

2E
+

02
2.

67
E −

04
7.8

6E
+

02
6.

36
E−

13
2.

23
E+

02
3.

35
E−

18
8.

00
E+

00
6.

04
E−

13
2.

22
E+

02
4.

21
E−

13
2.

15
E+

02
F2

2
2.

74
E−

09
1.2

8E
+

02
9.7

1E
−

01
1.2

5E
+

03
1.5

9E
−

16
9.8

0E
+

01
4.

53
E−

19
4.

00
E+

00
1.4

1E
−

16
9.6

0E
+

01
1.7

9E
−

16
1.0

0E
+

02
F2

3
8.

48
E−

09
1.0

3E
+

02
3.

24
E−

02
1.5

3E
+

03
7.9

4E
−

11
3.

16
E+

02
5.

98
E−

18
1.0

0E
+

01
9.1

1E
−

11
3.

19
E+

02
7.0

3E
−

12
2.

65
E+

02



26 Comput Mater Contin. 2025

Figure 5: Performance comparison of NTSSA with other algorithms

8.5 Component Effectiveness Analysis
In order to verify the effectiveness of multi-strategy synergy in NTSSA, this section analyzes the

contribution of each core component in combination with the experimental results, and selects representative
algorithms and corresponding functions to obtain the following Table 5:

Table 5: Ablation assay

Algorithm F5 (Single-peak
exploitation capability)

F8 (Global exploration
capability)

F12 (Local extreme
escape)

NTSSA 2.53E−07 −1.14E+04 2.42E−18
SSA(Primitive) 1.93E−05 −8.47E+03 2.55E−12
ISSA(No NGO) 1.56E−09 −5.06E+03 1.77E−11

CSSOA(No Chaos) 3.12E−05 −1.11E+04 6.62E−09

From the above table, we can draw the following conclusions:

(1) The effect of NGO exploration strategy: comparing the performance of NTSSA and ISSA (unconverged
NGO) in F8 (multi-peak function), the average adaptation of NTSSA (−1.14E+04) is significantly
better than that of ISSA (−5.06E+03), which suggests that NGO’s stochastic prey selection mechanism
expands the search radius through NGO algorithms and avoids falling into a local optimum.

(2) The role of adaptive t-distribution: in F5 (high-dimensional single-peak), the convergence accuracy of
NTSSA (2.53E−07) is improved by two orders of magnitude compared to the original SSA (1.93E−05).
This is attributed to the design of the degree-of-freedom parameter, which allows the algorithm to
approximate the Gaussian distribution in the later iterations and strengthen the local development.

(3) The necessity of dual-chaos initialization: comparing the performance of CSSOA (without dual-chaos
mapping) in F12, the accuracy of NTSSA (2.42E−18 vs. 6.62E−09) is improved by nine orders of
magnitude. The randomness of Bernoulli mapping synergistically enhances the initial population
diversity with the uniformity of Sinusoidal mapping.

(4) Balance of elite retention strategies: the Wilcoxon test showed that NTSSA significantly outperformed
HHO and GWO in most functions. dynamic elite proportions maintained the balance of population
quality and diversity through periodic fluctuations.
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9 Conclusion and Future Directions
In this paper, an enhanced Sparrow Search Algorithm (NTSSA) is proposed by integrating the Northern

Goshawk Optimization (NGO) algorithm and adaptive t-distribution. A total of 23 test functions from the
CEC2005 benchmark were selected for the simulation study. A Wilcoxon rank-sum test was then employed
to assess the performance of the algorithm. The following conclusions can be drawn:
(1) Improved Optimization Capability: NTSSA has shown significant improvement in finding optimal

solutions and escaping local minima. The initial positions of sparrows are crucial for global search, and
by incorporating adaptive t-distribution and chaotic mapping, the population is enriched, balancing
the global and local exploration capabilities of the algorithm. The NGO algorithm integrates to enhance
the algorithm’s ability to find optimal solutions, and the elite retention strategy strengthens this
capability. The simulation results also validate the effectiveness of the proposed method.

(2) Superior Performance Compared to Other Algorithms: The 23 test functions show that NTSSA
outperforms traditional algorithms such as HHO and GWO, as well as improved algorithms like ISSA
and CSSOA, in terms of convergence accuracy, solution speed, and the balance between local and
global optima. NTSSA exhibits outstanding optimization capability, and the W-test results confirm
this conclusion.

(3) Future Work: Future research can focus on further improving the optimization mechanism and
algorithm structure of the Sparrow Search Algorithm, or exploring other advanced optimization algo-
rithms to propose more powerful intelligent algorithms. Additionally, extending NTSSA to dynamic
optimization and multi-objective engineering applications could broaden the scope of its applications.
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